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Abstract

A harmonic balance technique for the analysis of unsteady flows about helicopter rotors in forward flight and hover is
presented in this paper. The aerodynamics of forward flight are highly nonlinear, with transonic flow on the advancing
blade, subsonic flow on the retreating blade, and stalled flow over the inner portion of the rotor. Nevertheless, the unsteady
flow is essentially periodic in time making it well suited for frequency domain analysis. The present method uses periodic
boundary conditions that allows one to model the flow field on a computational grid around a single helicopter blade, no
matter the actual blade count. Using this approach, we compute several solutions, each one corresponding to one of sev-
eral instants in time over one period. These time levels are coupled to each other through a spectral time derivative oper-
ator in the interior of the computational domain and through the far-field and periodic boundary conditions around the
boundary of the domain. In this paper, we apply the method to the three-dimensional Euler equations (although the
method can also be applied to three-dimensional viscous flows), and examine the steady and unsteady aerodynamics about
wings and rotors.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Rotorcraft aerodynamics is one of the most challenging problems in computational fluid dynamics (CFD)
because of the complex flow involved including unsteadiness and viscous phenomena. Helicopter rotor blades
create unsteady vortical wakes that create a downwash which affects the angle of attack of the rotor. Tip vor-
tices interact with the other blades of the rotor and may create significant noise and vibration. In forward
flight, the flow is highly nonlinear with transonic flow on the advancing blade, and subsonic flow on the
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retreating blade, with stalled flow over the inner portion of the rotor for high speeds. Because of the aforemen-
tioned complexities, the application of computational helicopter rotor aerodynamics has lagged behind that in
fixed-wing aircraft. Nevertheless, a number of researchers have contributed to the understanding of complex
unsteady aerodynamics of rotorcraft using CFD. Earlier CFD analysis tools for rotorcraft aerodynamics have
included transonic full potential models [1,2]. While these methods provide solutions at relatively low cost,
they may not capture some of the flow features that are important in determining the aerodynamic perfor-
mance of the rotor. Therefore, over the past couple of decades the Euler/Navier–Stokes analyses [3–14] have
become prevalent. For a complete review of the challenges and the state of the art in rotorcraft aerodynamics,
we refer the reader to the review papers of Conlisk [15] and Strawn et al. [16].

As computer power increases, increasingly sophisticated computer fluid dynamic models of unsteady flows
about helicopter rotors are being developed. It is now conceivable to perform time-accurate large eddy sim-
ulations (LES) of unsteady flows about helicopter rotors, albeit with considerable computational effort. If suc-
cessful, these techniques may provide more accurate solutions than currently available. However, such codes
will be – without additional breakthroughs in computer or algorithm technology – extremely expensive to use,
requiring significant computer resources. This will make them difficult to use in a design mode, where many
thousands of flight conditions and/or designs might be analyzed. Furthermore, these advanced CFD tech-
niques, while providing detailed information about the flow field, do not directly provide insight into how
to design helicopters for improved aerodynamic and aeroacoustic performance. In the work presented in
the literature to date, investigators have used time-accurate CFD methods, requiring significant amounts of
computational power and time, to analyze the nonlinear forward-flight aerodynamics of helicopter rotors.

The fact that the unsteady flow about helicopter rotors is temporally and spatially periodic makes it well
suited for frequency domain analysis. In the turbomachinery community, the need for efficient nonlinear
unsteady flow solvers led investigators to develop efficient mixed time and frequency-domain techniques. Hall
et al. [17–19] proposed the ‘‘harmonic balance” approach. In his original approach, Hall [17] represented peri-
odic unsteady flows by a Fourier series in time with frequencies that are integer multiples of the original exci-
tation frequency. The dependent variables were the Fourier coefficients of the Fourier series for each of the
conservation variables. These Fourier series were then inserted into the Euler or Navier–Stokes equations,
and the resulting expressions were ‘‘balanced”, that is, the resulting expressions were expanded, and terms
were collected frequency by frequency. For the Euler or Navier–Stokes equations to be satisfied, each fre-
quency component must vanish independently. The result is a set of coupled complex partial differential equa-
tions, one for each frequency retained in the model. Time derivatives in the nth equation were replaced by jxn.
Because time does not appear explicitly, the harmonic balance equations can be solved very efficiently using
the same numerical algorithms developed for steady-state flow problems.

The computational cost of the original form of the harmonic balance equations did not scale well with the
number of harmonics included in the model. Furthermore, the algebraic balancing does not work well with
more complicated equations such as the Navier–Stokes equations with turbulence models. To eliminate these
problems, Hall et al. [18,19] developed an improved version of the harmonic balance technique in which the
dependent variables are the conservation variables stored at a number of sub-time levels over one period. This
approach is somewhat similar to the dual time step approach [20], except that in the harmonic balance method
several time levels are stored, and one makes use of the temporal periodicity of the flow. In the dual time step
approach, one marches the solution from one physical time level to the next. Within each of these time steps, a
number of pseudo-time steps are taken to improve the accuracy of the physical time stepping solution. In the
harmonic balance technique, on the other hand, all physical time levels are computed simultaneously, with
pseudo-time marching used to drive the solution to convergence. The various physical time levels are only cou-
pled to one another through the periodic boundary conditions (blade to blade periodicity), and through a
pseudo-spectral operator that approximates the time derivatives in the Euler or Navier–Stokes equations.
The advantage of this modified harmonic balance approach is that the computational cost scales (nearly) lin-
early with the number of time levels retained in the model. Furthermore, use of the pseudo-spectral time deriv-
ative operator allows one to use a small number of time levels (or equivalently harmonics) to obtain quite
accurate solutions. The resulting equations are mathematically equivalent to steady equations and, therefore,
convergence acceleration techniques used to speed convergence of steady flow solvers may be applied. The
main disadvantage of the harmonic balance approach is the increased memory requirement due to the storage
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of the different time level solutions. This may be a problem if a large number of sub-time levels must be
retained in the analysis. In such cases, parallel computing may be used to avoid the memory requirement
problems.

A number of investigators have contributed to the development of the harmonic balance technique, or have
used the technique to solve interesting fluid dynamic problems. Such problems include the vortex shedding of
a circular cylinder [21,22], multistage turbomachinery analysis [23,24], limit-cycle oscillations of wings [25],
and normal synthetic jet in quiescent background flow [26]. Recently, investigators [27,28] have started using
similar techniques to analyze unsteady aerodynamics of helicopter rotors, and have demonstrated that accu-
rate solutions can be obtained efficiently. In this work, we apply the state-of-the-art high-dimensional har-
monic balance (HDHB) technique to helicopter rotors in forward-flight and demonstrate that large scale
nonlinearities can be accurately modeled with substantially less computational effort than conventional
time-accurate solution methods. A further advantage of the current approach is that since the harmonic bal-
ance equations are mathematically steady state equations, the resulting code would be well suited for an
adjoint sensitivity analysis, leading ultimately to the ability to optimize rotors for performance and noise in
a systematic way.
2. Harmonic balance theory

To motivate the HDHB approach, consider the three-dimensional Euler equations, given by
oU

ot
þ oF

ox
þ oG

oy
þ oH

oz
þ S ¼ 0; ð1Þ
where x and y are coordinates in the plane of the helicopter rotor and z is the axis about which the rotor turns.
The coordinate system is assumed here to rotate with the rotor at angular velocity X. The vector U is the vec-
tor of conservation variables, the vectors F, G, and H are so-called flux vectors, and S is a source term. For
example, some of these vectors are given by
U ¼

q

qu

qv

qw

qe

2
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3
7777775
; F ¼

qu

qu2 þ p

quv

quw

quI

2
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�qðX2y þ 2XvÞ
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0

0

2
6666664

3
7777775
: ð2Þ
Eqs. (1) and (2) represent the conservation of mass, three components of momentum, and energy, respectively.
In the above equations, q is the density, u, v, and w are the velocity components in the x, y, and z and direc-
tions, respectively, e is the total internal energy, I is the total rothalpy, and p is the static pressure. For an ideal
gas with constant specific heats, the rothalpy and pressure may be expressed in terms of the conservation vari-
ables, i.e.,
I ¼ qeþ p
q

; ð3Þ

p ¼ ðc� 1Þq e� 1

2
ðu2 þ v2 þ w2Þ þ 1

2
X2r2

� �
; ð4Þ
where r is the distance from the z axis ðr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ.

2.1. Classical harmonic balance method

For many flows of interest in helicopter aerodynamics, the flow (when viewed in the rotating frame of ref-
erence) is periodic in time, with period T = 2p/X. Because the flow is temporally periodic, the flow variables
may be represented as a Fourier series in time with spatially varying coefficients. For example, the conserva-
tion variables may be expressed as
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qðx; y; z; tÞ ¼
X

n

Rnðx; y; zÞejxnt; quðx; y; z; tÞ ¼
X

n

U nðx; y; zÞejxnt;

qvðx; y; z; tÞ ¼
X

n

V nðx; y; zÞejxnt; qwðx; y; z; tÞ ¼
X

n

W nðx; y; zÞejxnt

qeðx; y; z; tÞ ¼
X

n

Enðx; y; zÞejxnt; ð5Þ
where x is the fundamental frequency X. In principle, the summations in these series are taken over all integer
values of n. In practice, however, the series may be truncated to a finite number of terms, �N 6 n 6 +N.

Next, we substitute the series expansions for q, qu, qv, qw, and qe into the Euler equations. Conceptually,
we can now expand the resulting expressions into Fourier series in time, grouping the resulting terms by fre-
quency, and require each frequency component to sum to zero individually. Collecting the resulting equations
together, including the equivalent mass and energy equations, into one vector equation gives
~Qð~UÞ þ o~Fð~UÞ
ox

þ o~Gð~UÞ
oy

þ o ~Hð~UÞ
oz

þ ~Sð~UÞ ¼ 0; ð6Þ
where
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8>>>>>>>>>>>>>>>>>>>>>><
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ð7Þ
The vectors ~F; ~G, and ~H contain the Fourier coefficients of the Fourier series expansion for the flux vectors.
Similarly, ~Sð~UÞ contains the Fourier coefficients of the source term. ~Qð~UÞ is the remnant of the time derivative
term appearing in the original Euler equations. Finally, we note the conservation variables are real quantities,
so that, for example,
U�n ¼ Un; ð8Þ

where Un is the complex conjugate of Un. Thus, we only need to store Fourier coefficients for non-negative n.
If N harmonics are retained in the Fourier series representation of the flow, then 2N + 1 coefficients are stored
for each flow variable (one for the zeroth harmonic or mean flow, and 2N for the real and imaginary parts of
the remaining harmonics).

2.2. High-dimensional harmonic balance method

Computation of the harmonic fluxes in the classical harmonic balance approach is difficult and computa-
tionally expensive. The operation count is on the order of N3, so that the cost of the harmonic balance analysis
grows rapidly with the number of harmonics. To alleviate this difficulty, we note that alternatively one can
store solutions at 2N + 1 equally spaced points in time over one period. In other words,
Uðx; y; z; tÞ � A0ðx; y; zÞ þ
XN

n¼1

½Anðx; y; zÞ cosðxntÞ þ Bnðx; y; zÞ sinðxntÞ�; ð9Þ
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where, A0, An, and Bn are the Fourier coefficients of the flow variables. This expression can also be written in
matrix form as
U� ¼ E�1 ~U; ð10Þ

where U* is the vector of conservation variables at 2N + 1 equally spaced points in time over one temporal
period and E�1 is matrix that is the inverse discrete Fourier transform operator. As an example, assume that
one retains five harmonics in the HDHB method so that
U1

U2

U3

..

.

U11

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;|fflfflfflfflffl{zfflfflfflfflffl}
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¼
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..
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3
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E�1

A0

A1

..

.

A5

B1

..

.

B5

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
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~U

ð11Þ
Similarly, one can obtain the Fourier coefficients of the conservation variables using
~U ¼ EU�; ð12Þ

where E is the discrete Fourier transformation matrix. Next, we write the Euler equations at all sub-time levels
simultaneously, so that
oU�

ot
þ oF�

ox
þ oG�

oy
þ oH�

oz
þ S� ¼ 0; ð13Þ
where for example, F* is the vector of x-fluxes evaluated at U*. Hence, Eq. (13) has 5 � (2N + 1) equations.
Note that the 2N + 1 sets of conservation equations in Eq. (13) are coupled only through the time deriv-

ative term, which is approximated by the pseudo-spectral operator, D. To motivate the development of D,
we note that
o

ot
U� ¼

XN

n¼1

½�xn � An sinðxntÞ þ xn � Bn cosðxntÞ� ð14Þ
or in matrix form
oU�

ot
¼ oE�1

ot
~U: ð15Þ
Making use of Eq. (12) gives the desired pseudo-spectral operator
oU�

ot
¼ oE�1

ot
EU� ¼ DU�: ð16Þ
Finally, substitution of Eq. (16) into Eq. (13) gives the desired harmonic balance equations, i.e.,
DU� þ oF�

ox
þ oG�

oy
þ oH�

oz
¼ S�: ð17Þ
The advantage of Eq. (17) over the classical form of the harmonic balance equations, Eq. (6), is that the fluxes
in Eq. (17) are much easier to compute (order N operations). The fluxes are simply computed at each of the
2N + 1 time levels in the usual way. Note that this form of the harmonic balance equations is similar to the
nonlinear frequency domain (NLFD) form of McMullen et al. [22]. In the NLFD approach, the Fourier coef-
ficients of the flow variables are solved and stored. When the computation of the residuals in the frequency
domain is required, one first needs to transform the Fourier coefficients back to the time domain using an
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inverse fast-Fourier transform (FFT). After that, the residuals are computed in the time domain and the Fou-
rier coefficients of the residuals are computed using an FFT and the governing equations are solved in the fre-
quency domain. The main advantage of the HDHB method is its ease of implementation to the existing
steady-state codes. Similar to the NLFD approach, HDHB uses convergence acceleration techniques (multi-
grid acceleration and local time-stepping) and the convergence rate of the unsteady solution is equivalent to
the convergence rate of the steady-state solution (see Section 5.3).

3. Numerical solution technique

To solve the harmonic balance equations, we introduce a ‘‘pseudo-time” term so that the equations may be
marched rapidly to a steady-state condition using a conventional computational fluid dynamic scheme. Thus,
Eq. (17) becomes
oU�

os
þDU� þ oF�

ox
þ oG�

oy
þ oH�

oz
þ S� ¼ 0; ð18Þ
where s is a fictitious or pseudo time, used only to march Eq. (18) to steady state, thereby driving the pseudo-
time term to zero. Note that pseudo-time harmonic balance equations are similar in form to the original time-
domain form of the Euler equations, Eq. (1). Thus, existing well-developed steady CFD techniques may be
used to efficiently solve the nonlinear harmonic balance equations, with a similar number of iterations re-
quired. Eq. (18) is discretized on a computational grid spanning only a single blade sector. A typical grid is
shown in Fig. 1. We use Ni’s [29] two-step Lax–Wendroff scheme to discretize the harmonic balance equations.
The Lax–Wendroff scheme is a node-centered conservative finite volume scheme. A combination of second
and fourth difference smoothing is used to capture shocks. Also, because only ‘‘steady-state” solutions are
desired, we use local time stepping and multiple-grid acceleration techniques to speed-up convergence.
Fig. 1. Representative computational grid for a rotor sector.
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In Eq. (18), we use a spectral operator to compute the time derivative term DU*. As presented, this operator
requires OðN 2Þ operations to compute; using fast Fourier transform techniques, the cost can be reduced to
OðN logðNÞÞ. However, the calculation of the flux vector terms is greatly simplified, requiring only OðNÞ com-
putations. For a small number of sub-time level solutions retained in the analysis (N 6 11), the flux calcula-
tions require substantially more computational time than the relatively simple time derivative term. Thus, the
computational time scales approximately like the number of Fourier terms retained in the solution, or, equiv-
alently the number of time slices in U*. However, when the number of sub-time levels is large the cost of com-
puting the time derivative increases.

The high-dimensional harmonic balance method as described here has some similarities to the ‘‘dual time
step” method, used by Davis et al. [20], Sayma et al. [30], and others to compute unsteady flows in the time
domain. Our approach, however, has a number of important advantages. First, in the dual time step method,
one marches from one time level to the next time accurately, using pseudo-time to drive the residual of the
time-accurate equations to zero. The process is repeated over many times steps for several periods T until a
periodic solution has been reached. In our approach, we store the solution at just a few points over a single
period, and the solutions at all these temporal points are advanced simultaneously using pseudo-time march-
ing until the solution converges. Second, because we solve for the solution over one complete period, a spectral
operator may be used to compute the physical time derivative o/ot. The spectral time derivative is much more
accurate than finite difference operators, which are used in the dual time step approach. Therefore, many fewer
physical time levels are required using the present method. Finally, previous work by the authors indicates that
the resulting scheme may be much less dissipative than conventional time domain techniques, and thus better
suited for computing aeroacoustic quantities.

The HDHB technique is applicable in all helicopter flight regimes, but will be especially efficient for any
problem where the time-average or the low frequency content is important, for example the time-averaged
aerodynamic performance, per rev vibrations and many acoustic problems including high speed impulsive
noise. For these problems, it should be possible to estimate accurately the first two tones using on the order
of nine to eleven time slices (four to five harmonics), a result that was also confirmed by Choi et al. [27]. Thus,
the computational cost will approximately be ten times a single steady-flow computation.
4. Boundary conditions

The boundary conditions consist of surface, far-field, and periodic boundary conditions and are applied
once at every iteration in the flow solver. On the blade surface, the flow tangency condition is imposed for
the Euler equations.

At the far-field boundary, we apply one-dimensional Riemann boundary conditions as described in Tho-
mas and Salas [31]. To summarize, at the grid nodes where the flow velocity is locally incoming, we prescribe
four characteristics associated with the physical free-stream values; we compute the fifth characteristic from
the internal values. In case of locally outgoing flow, on the other hand, one needs to specify only one charac-
teristic associated with the specified free-stream; the remaining four characteristics are computed from the
internal values.

In addition to temporal periodicity, the flow about a helicopter rotor also satisfies a certain spatial period-
icity. That is, the flow about one blade is the same as the flow about a neighboring blade, but with a time shift.
Consider a four-bladed rotor in forward-flight depicted in Fig. 2. The periodic boundary condition requires
that the current solution at point a is the same as the solution at point b at an earlier time, i.e.,
UaðtÞ ¼ Ubðt � DtÞ: ð19Þ

In other words,
Uðr;w; z; tÞ ¼ U r;wþ 2p
N B

; z; t � T
NB

� �
; ð20Þ
where NB is the number of rotor blades and Dt = T/NB. Note that we have now switched momentarily to
cylindrical coordinates for simplicity. To apply these conditions, the solution U* is transformed along the peri-
odic boundaries using Eq. (12) to find the vector of Fourier coefficients ~U (which contains the cosine and sine
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coefficients An and Bn). Inspection of Eq. (9) reveals that the appropriate boundary condition in frequency-
domain is given by
A0 r;wþ 2p
N B

; z
� �

¼ A0ðr;w; zÞ; ð21Þ

An r;wþ 2p
N B

; z
� �

¼ Anðr;w; zÞ cos
2pn
NB

� �
þ Bnðr;w; zÞ sin

2pn
NB

� �
; ð22Þ

Bn r;wþ 2p
NB

; z
� �

¼ �Anðr;w; zÞ sin
2pn
NB

� �
þ Bnðr;w; zÞ cos

2pn
N B

� �
; ð23Þ
where n P 1. These periodic boundary conditions allow us to reduce the computational domain to a grid
spanning a single blade sector and hence reduces both the storage requirements and the computation time
by a factor of NB, the number of rotor blades.
5. Numerical results

5.1. Steady computations for ONERA M6 wing

In this section, we investigate the aerodynamics of the well-known and often analyzed ONERA M6 wing to
validate our steady-flow solver. There are a number aerodynamic complexities involved with this wing, for
example, the formation of a lambda shock on the upper surface, and local supersonic flow. Because of these
complexities, it has been used by many researchers for code validation. The transonic ONERA M6 wing is a
swept semi-span wing with no twist, and a symmetric airfoil section. The experimental data [32] for this wing
were recorded for a number of transonic Mach numbers at different angles of attack. Here, we perform com-
putations for a Mach number of 0.8395 and an angle-of-attack of 3.06. The C–H type computational grid used
(193 � 33 � 33) for this case is shown in Fig. 3.

Shown in Fig. 4 is the computed surface pressure coefficient, Cp, distribution for the ONERA M6 wing at
several spanwise locations. Also shown in the same figure are the experimental data and the computations
obtained from the NASA-WIND [33] Navier–Stokes code. As can be seen, the overall agreement among
the present computations (Duke ROTOR), NASA-WIND computations as well as the experimental data is
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very good. This shows that, for this case, our Euler solver can accurately predict the steady flow (shock loca-
tion and pressure distribution). Fig. 5 shows the computed surface and symmetry plane pressure contours for
this case. One can see that, our solver can clearly capture the ‘‘lambda-shock” forming on the suction side of
the wing. Note that the same phenomenon was observed by many other researchers.

5.2. Caradonna–Tung rotor in hover

Having validated our flow solver for steady flow around a three-dimensional wing, we now move our atten-
tion to flows about rotors. In this section, we present computational results for the well-known rotor of Cara-
donna and Tung [34] (C–T) in hover. The C–T rotor has two untapered rectangular blades with an aspect ratio
of 6 and the sections have NACA 0012 profiles. In their experiments, Caradonna and Tung [34] measured the
surface pressure data at five different spanwise locations for a number of collective pitch angles and rotational
speeds. The case considered in this paper has a tip Mach number, Mtip of 0.877 and a collective pitch angle of
8.0�. Here, we use a grid that has 193 � 33 � 33 nodes (with 17 nodes on the blade in spanwise direction). The
outer boundary as well as the top and bottom boundaries were placed at a distance of two blade spans above
and below the rotor. Figs. 6 and 7 show the grid used for the computations in this case. Note that because
periodic boundary conditions are used in this work, one only needs to generate a grid spanning a single blade
sector.

We first investigate the static pressure contours around the rotor blade for six different span locations. As
can be seen from Fig. 8 the flow is subsonic out to 80% span of the outboard of this location and the flow is
transonic with a strong shock towards the tip of the blade. This feature is expected since the tip speed of the
rotor is transonic for the case considered here. Next, we plot the surface pressure coefficient at five span loca-
tions where the experimental data is available. Shown in Fig. 9 are the computed Cp distributions as well as the
experimental values [34]. One can see that the agreement with the experiment is very good except on the suc-
tion surface at 68% span. Our computations predict lower values of Cp for this section. We note that similar
results were obtained by other researchers (for example, see Srinivasan and McCroskey [5]) for the 68% sec-
tion. In this study, we do not use the sink boundary conditions for hover suggested by Srinivasan et al. [9],
which may be the cause of this discrepancy.
Fig. 5. Computed pressure contours on the ONERA M6 wing surface and the symmetry plane.



Fig. 6. Three-dimensional O–H computational grid used for C–T rotor in hover.

Fig. 7. Representative two-dimensional O-grid around the rotor blade.
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5.3. Caradonna–Tung rotor in non-lifting forward flight

In this section, we present numerical results for unsteady flow about the C–T rotor in non-lifting forward
flight. The rotor used here is comprised of two rectangular planform blades with no twist, no collective pitch
and an aspect ratio of 7. A number of investigators [11,12] have used this case for validating their numerical
tools, comparing their results to the available experimental data [35]. As in the previous hover case, we used a



Fig. 8. Computed static pressure contours for C–T rotor in hover. (a) 50% span; (b) 68% span; (c) 80% span; (d) 89% span; (e) 96% span;
(f) 100% span.
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Fig. 9. Cp distribution on blade surface for C–T rotor in hover.
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grid with 193 � 33 � 33 grid points. The flow has strong transonic effects on the advancing blade because of
the high tip Mach number (Mtip = 0.8) and moderately high advance ratio (l = 0.2).

For the following unsteady computations, we retained a total of nine harmonics (19 sub-time level solu-
tions). These solutions were all marched to convergence making use of the HDHB equations and the
pseudo-spectral operator to obtain the unsteady flow in forward flight. Fig. 10 shows the contour plots of
the static pressure on the suction surface of the blade at these 19 sub-time levels, corresponding to 19 azimuth
angles. It can be seen that a time-dependent shock forms on the advancing side and disappears on the retreat-
ing side. These results are in good agreement with the time-accurate computations of Pomin and Wagner [11].

As mentioned previously, the computations are performed on a grid spanning only a single blade sector and
the flow may be reconstituted for other sectors using the complex periodic boundary conditions. As an exam-
ple, Fig. 11 shows the density contours plotted in the plane of the rotor. Note that we only computed the flow
for the advancing half of the domain. The flow in the retreating half is reconstituted using the periodic bound-
ary conditions. It can clearly be seen that the flow in the two sectors is different because of the asymmetry
caused by forward flight. It can also be seen that the contour lines at the periodic boundaries are smooth
and continuous.

Next we compare our results (nine harmonics) to the experimental data of Caradonna et al. [35] shown in
Fig. 12 is the Cp distribution at the 89% span of the blade at different azimuth angles, w. As can be seen, the
agreement between our computations and the experiments is very good. The location as well as the strength of
the shock is accurately predicted demonstrating once again the accuracy of our method.

The previous unsteady flow results presented in this section were obtained for nine harmonics using the
HDHB method. We now turn our attention to the number of harmonics retained in the model and investigate
its effect on the accuracy of the computation. For this study, we compute the unsteady flow using 1, 5, 9, and
13 harmonics. In rotorcraft aerodynamics, the lower harmonics usually are more important than the higher
ones because they contribute the most to the noise generated by the rotor. Therefore, we compute the zeroth
harmonic (mean) and the first harmonic of the surface pressure at 89% span location. As shown in Fig. 13, the
solutions computed using 5, 9, and 13 harmonics are in good agreement for the mean quantities, whereas the
solution computed using one harmonic misses some of the details of the flow. For example, the shock location
Fig. 10. Surface pressure contours at different azimuth angles (nine harmonics retained in the analysis).



Fig. 11. Density contours in the plane of rotor. Complex periodic boundary conditions allow us to use a grid with only one blade sector.
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is predicted to be slightly farther downstream for one harmonic. It can also be seen from the real and imag-
inary parts of the first harmonic of the unsteady pressure that the solutions computed using 9 and 13 harmon-
ics are in good agreement with one another. For five harmonics, however, some of the details cannot be
accurately captured. Nevertheless, the overall agreement among five and higher harmonic solutions are within
engineering accuracy. This implies that for this problem, one can use as few as five harmonics (11 sub-time
level solutions) to accurately model the unsteady flow.

Finally, for this same case, we present the convergence histories for different number of harmonics retained
in the analysis. Fig. 14 shows that for no multigrid acceleration, the computations for the steady solution
(hover), and unsteady solutions using 1, 5, 9, and 13 harmonics converge in about 4000 iterations. Also shown
in the same figure is the convergence history for five harmonics with two levels of multigrid acceleration. With
two levels of multigrid acceleration, the solution converges in about 1000 iterations. Table 1 shows the com-
putational for a single iteration. Note that for all cases the computational times are normalized with respect to
the steady-state computational time. As can be seen, for small number of sub-time levels retained in the model,
i.e., N 6 11, the cost of the unsteady computations scale linearly, and is 2N + 1 times the cost of the steady
solution. However, as the number of sub-time levels is increased, the cost of the unsteady solutions is not
exactly linear due to the increased cost of the time derivative computation. The same behavior was also
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Fig. 15. Surface pressure contours for lifting C–T rotor at different azimuth angles (seven harmonics used in the analysis).
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where Fz is the force on the blade in the z direction. After computing the values of CL in time domain, one can
easily use the discrete Fourier transformation matrix, E, and obtain the Fourier coefficients of CL. Table 2
shows the zeroth, first and the second harmonics of CL. As can be seen, the solution is nearly converged when
one uses seven harmonics to model the unsteady flow. The same can also be seen from the pressure contour
plots at 90� azimuth angle and 89% span, where the transonic nonlinear effects are strongest, as shown in
Fig. 16. Note that seven and eleven harmonic solutions are in good agreement with one another but differ
somewhat from the solution computed using three harmonics. Next, we compare the values of CL computed
using 1, 3, 5, 7, 9, and 11 harmonics at different azimuth angles. Fig. 17 clearly shows the effect of number of
harmonics used. We observe that the solution computed using five harmonics is nearly converged. This once
again implies that one only needs a handful harmonics to accurately compute strongly nonlinear flows in for-
ward-flight.

Finally, we plot the values of CL at different azimuth angles and compare our results to those of
Allen. As seen in Fig. 18, the agreement between the two solvers is excellent. Our computations seem
to have a slightly weaker blade-vortex interaction compared to Allen’s computations, but otherwise agree
quite well.
Table 2
Harmonics of rotor load coefficient for non-lifting C–T rotor in forward-flight

Harmonics CL0
CL1

CL2

1 0.2419 (0.0231,�7.1627E � 03)
3 0.2168 (0.1017,�2.2010E � 02) (5.9153E � 03,�3.1381E � 02)
5 0.2152 (0.1382,�3.1691E � 02) (1.6361E � 02,�4.6781E � 02)
7 0.2148 (0.1536,�3.5636E � 02) (1.8821E � 02,�5.2767E � 02)
9 0.2161 (0.1565,�3.6433E � 02) (1.7086E � 02,�5.3545E � 02)

11 0.2156 (0.1569,�3.6888E � 02) (1.5854E � 02,�5.2950E � 02)



Fig. 16. Pressure contours at w = 90� and r/Rtip = 0.89.
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Fig. 17. The effect of number of harmonics used in the analysis.
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6. Conclusions

In this study, we have applied a state of the art high-dimensional harmonic balance technique to predict
unsteady aerodynamics about helicopter rotors. We have demonstrated that our code can accurately model
both unsteady (forward-flight) and steady (hover) flows for the test cases presented in this paper. We have also
shown that strongly nonlinear flows can be modeled to engineering accuracy with a small number of harmon-
ics. Thus, the method is computationally efficient, requiring computational times that scale with the number of
sub-time levels in the model times the cost of a single steady computation. By contrast, the cost of a conven-
tional time-marching calculation is about two orders of magnitude greater than that of a steady solution. Our
method also has other distinct advantages over its time-domain equivalents. First, using complex periodicity
conditions, the computational domain can be reduced to a grid spanning a single blade sector. Second, using
the pseudo time marching technique, the governing equations can be solved using steady-state acceleration
techniques such as local time stepping and multigrid acceleration. Finally, although the method was presented
for inviscid flows, it can be generalized to viscous cases and indeed viscous flow solutions for fixed wings are
already available in the literature.
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